If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-11k+8=0
a = 3; b = -11; c = +8;
Δ = b2-4ac
Δ = -112-4·3·8
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-5}{2*3}=\frac{6}{6} =1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+5}{2*3}=\frac{16}{6} =2+2/3 $
| 12/n-8=-4 | | (3x-16)(x-1)=-4 | | 5n-4+n=20 | | -7+h=15 | | 2y-1=1y | | -34=-5n-4 | | 6s−5s=6 | | 2x-1=-1x | | 4+4=x7 | | 3x+2/2-4x+4/5=3 | | 25-3c=-14 | | -126.89+x+3.5x-25=151.89+4.5x | | -$126.89+x+3.5x-25=151.89+4.5x | | -6n-14=34 | | 4+15=19x7 | | 2x/4-2=2 | | z+4(2z+3)=15z+4(2z+3)=15 | | 2/3y/5=11 | | -5n-19=31 | | 6x-4+5x+4=x | | 6x-$54=168 | | 6x+$54=168 | | -14=-4x+6 | | 8^4x=256 | | -10j—-14=-16 | | 29=-4n+5 | | 1y×16=36 | | 54+6w=8w-10w+70 | | 20k-20k+4K-k+1=13 | | -4+8h+8=3h | | 13j-10j+4=16 | | 4x4x=180 |